Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Biomolecules & Therapeutics ; : 80-89, 2022.
Article in English | WPRIM | ID: wpr-913705

ABSTRACT

The targeting of DNA methylation in cancer using DNA hypomethylating drugs has been well known to sensitize cancer cells to chemotherapy and immunotherapy by affecting multiple pathways. Herein, we investigated the combinational effects of DNA hypomethylating drugs and ionizing radiation (IR) in human sarcoma cell lines both in vitro and in vivo. Clonogenic assays were performed to determine the radiosensitizing properties of two DNA hypomethylating drugs on sarcoma cell lines we tested in this study with multiple doses of IR. We analyzed the effects of 5-aza-dC or SGI-110, as DNA hypomethylating drugs, in combination with IR in vitro on the proliferation, apoptosis, caspase-3/7 activity, migration/invasion, and Western blotting using apoptosis- or autophagy-related factors. To confirm the combined effect of DNA hypomethylating drugs and IR in our in vitro experiment, we generated the sarcoma cells in nude mouse xenograft models. Here, we found that the combination of DNA hypomethylating drugs and IR improved anticancer effects by inhibiting cell proliferation and by promoting synergistic cell death that is associated with both apoptosis and autophagy in vitro and in vivo. Our data demonstrated that the combination effects of DNA hypomethylating drugs with radiation exhibited greater cellular effects than the use of a single agent treatment, thus suggesting that the combination of DNA hypomethylating drugs and radiation may become a new radiotherapy to improve therapeutic efficacy for cancer treatment.

2.
Intestinal Research ; : 297-305, 2020.
Article | WPRIM | ID: wpr-834419

ABSTRACT

Background/Aims@#Overwhelming evidence suggests that inflammatory bowel disease (IBD) is caused by a complicated interplay between the multiple genes and abnormal epigenetic regulation in response to environmental factors. It is becoming apparent that epigenetic factors are significantly associated with the development of the disease. DNA methylation remains the most studied epigenetic modification, and hypermethylation of gene promoters is associated with gene silencing. @*Methods@#DNA methylation alterations may contribute to the many complex diseases development by regulating the interplay between external and internal environmental factors and gene transcriptional expression. In this study, we used 15 tumor suppressor genes (TSGs), originally identified in colon cancer, to detect promoter methylation in patients with Crohn’s disease (CD). Methylation specific polymerase chain reaction and bisulfite sequencing analyses were performed to assess methylation level of TSGs in CD patients. @*Results@#We found 6 TSGs (sFRP1, sFRP2, sFRP5, TFPI2, Sox17, and GATA4) are robustly hypermethylated in CD patient samples. Bisulfite sequencing analysis confirmed the methylation levels of the sFRP1, sFRP2, sFRP5, TFPI2, Sox17, and GATA4 promoters in the representative CD patient samples. @*Conclusions@#In this study, the promoter hypermethylation of the TSGs observed indicates that CD exhibits specific DNA methylation signatures with potential clinical applications for the noninvasive diagnosis of IBD and the prognosis for patients with IBD.

SELECTION OF CITATIONS
SEARCH DETAIL